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Abstract A recent 35-year endpoint shoreline change analysis revealed significant counterclockwise
rotations occurring in north-central Oregon, USA, littoral cells that extend 10s of kilometers in length.
While the potential for severe El Niños to contribute to littoral cell rotations at seasonal to interannual scale
was previously recognized, the dynamics resulting in persistent (multidecadal) rotation were unknown,
largely due to a lack of historical wave conditions extending back multiple decades and the difficulty of
separating the timescales of shoreline variability in a high energy region. This study addresses this question
by (1) developing a statistical downscaling framework to characterize wave conditions relevant for longshore
sediment transport during data-poor decades and (2) applying a one-line shoreline change model to
quantitatively assess the potential for such large embayed beaches to rotate. A climate INdex was optimized
to capture variability in longshore wave power as a proxy for potential LOngshore Sediment Transport
(LOST_IN), and a procedure was developed to simulate many realizations of potential wave conditions from
the index. Waves were transformed dynamically with Simulating Waves Nearshore to the nearshore as
inputs to a one-line model that revealed shoreline rotations of embayed beaches at multiple time and spatial
scales not previously discernible from infrequent observations. Model results indicate that littoral cells
respond to both interannual and multidecadal oscillations, producing comparable shoreline excursions to
extreme El Niño winters. The technique quantitatively relates morphodynamic forcing to specific climate
patterns and has the potential to better identify and quantify coastal variability on timescales relevant to a
changing climate.

Plain Language Summary The global climate forces large atmospheric weather patterns which in
turn create the ocean waves ultimately responsible for erosion at the coastline. As the global climate changes,
so too can long-term trends in coastal erosion. We have developed a technique to directly relate weather
patterns to coastal change resulting from the transport of sediment along beaches and applied the method
to investigate shoreline change trends in Oregon, USA, from the 1950s to the present. Counter to previous
understanding, climate change on the timescale of multiple decades is responsible for which municipalities
in Oregon experience persistent erosion hazards. The technique revealed the importance of large-scale
climate in changing storm tracks approaching Oregon across the North Pacific. The technique developed for
identifying climate patterns relevant to local coastal dynamics could be a useful predictive tool for
understanding how the coast may evolve on timescales relevant for coastal managers into the 21st century.

1. Introduction

Beaches around the world are currently experiencing chronic erosion, which is only expected to worsen due
to global climate change (e.g., Vitousek, Barnard, Limber, 2017). The nearshore science community has recog-
nized that predicting coastal vulnerability into the 21st century requires the development of quantitative
methodologies to assess long-term coastal evolution in nonstationary climates (Elko et al., 2014). Coastal
managers typically assess resilience to coastal hazards by tracking changes in the shoreline, a proxy or eleva-
tion contour on the beach face that exhibits significant variability on wide spatial and temporal scales
(Davidson et al., 2007; Stive et al., 2002). Sophisticated process-based 3-D sediment transport modeling for
shoreline prediction is still impractical at timescales of a year or more due to computational costs and the
accumulation of numerical errors (e.g., Davidson et al., 2017; J. A. Roelvink, 2006), necessitating the develop-
ment of approaches that strategically employ simple, computationally efficient, coastal impact models to
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predict shoreline variability on timescales relevant to engineering and coastal management decisions
(Ranasinghe, 2016). This study develops such a methodology, specifically creating a climate index
optimized to derive continuous wave conditions for a simple shoreline evolution model driven by
gradients in longshore sediment transport. Emphasis is placed on the techniques used to statistically
derive wave climates and the subsequent implications for which processes and timescales dominate
temporal rates of shoreline change.

The study is motivated by questions regarding the impact of climate variability on long-term coastal evolu-
tion in the Pacific Northwest (PNW) of the United States (Allan & Komar, 2006). The region is composed pre-
dominantly of dissipative beaches, ~10–50 km in length separated by intermittent headlands (Figure 1). The
offshore extents of headlands typically reach deep water, effectively constraining sediment movement and
creating discrete littoral cells with individual sediment budgets (Komar, 1986). Headland-bounded beaches,
or embayed beaches, are a common coastal landform found throughout the world (e.g., Short & Masselink,
1999). Field studies (Harley et al., 2011; Ruiz de Alegria-Arzaburu & Masselink, 2010) and remote sensing
observations (Bryan et al., 2013; Turki et al., 2013) have revealed a common geomorphic behavior whereby
the embayed beach planform periodically rotates clockwise/counterclockwise. Beach rotation has been
observed on multiple timescales and correlated with a variety of potential drivers, including individual storm
events (Archetti & Romagnoli, 2011; Harley et al., 2014), annual oscillations due to different summer and win-
ter wave climates (Masselink & Pattiaratchi, 2001), and interannual oscillations correlated with climate indices
(e.g., El Niño-Southern Oscillation, Barnard et al., 2015; Ranasinghe et al., 2004; and North Atlantic Oscillation,
T. Thomas et al., 2011). Rotations are commonly attributed to gradients in longshore transport of sediment
due to changes in wave direction (Blossier et al., 2017; Short & Masselink, 1999), though recent

Figure 1. (a) Drawing of typical hot spot erosion during an El Niño year (after Komar, 1998b) and (b) shoreline change between 1967 and 2002 across four different
littoral cells in the north-central Oregon, U.S. coast. Blue/red denotes shoreline accretion/erosion and gray bands quantify uncertainty (after Ruggiero et al., 2013).
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observations of a small embayment with large alongshore gradients in both wave exposure and sandbar
location have led to additional hypotheses proposing the importance of cross-shore processes (Bryan
et al., 2013; Harley et al., 2015).

Signals of shoreline rotation in the PNW have been observed during the winters of major El Niños in
1982–1983, 1997–1998, and 2015–2016 (Barnard et al., 2017; Kaminsky et al., 1998; Komar, 1986, 1998b;
Peterson et al., 1990; Revell et al., 2002). Large storm waves approaching from more oblique southerly direc-
tions are believed to drive an anomalous longshore sediment transport to the north, and the gradients in
longshore transport cause hot spot erosion north of headlands and inlet entrances (Figure 1; Komar,
1998b; Ruggiero et al., 2013). At longer timescales (interannual to multidecadal), the coast has been hypothe-
sized to be relatively stable (Komar, 1986), with seasonal variability overwhelming any trends in shoreline
evolution (10s of meters of seasonal cross-shore shoreline movement due to average significant deep water
wave heights of 1.8 m with 8-s periods from west-northwest during the summer, and 3.8 m at 12 s from west-
southwest during winters; Allan et al., 2003).

Recently, a comprehensive region-wide coastal change study revealed multidecadal counterclockwise rota-
tions in multiple littoral cells in Central Oregon (Figure 1; Ruggiero et al., 2013). The long-term shoreline
rotations were revealed through an endpoint rate between two shorelines obtained in the summers of
1967 and 2002, a time period which encompasses two of the three aforementioned major El Niño counter-
clockwise rotation events. Although widely used, trends extrapolated from historical shoreline observations
through regression analysis or endpoint rates are incapable of capturing temporal variations in the change
rate (i.e., trend reversals, accelerations, and decelerations; Fenster & Dolan, 1994; Ruggiero et al., 2013).
Questions remain regarding the applicability of projecting the observed endpoint rate to future PNW coastal
evolution. Are El Niño rotations compounding events or discrete disturbances from a long-term equilibrium?
Observations of recovery following the 1982–1983 El Niño indicate that sand did not return south until 4 years
after the disturbance (Peterson et al., 1990). Could the appearance of a multidecadal rotation simply be a
consequence of the 2002 shoreline’s proximity to the 1997 event?

Sandy coastlines naturally evolve to equilibrium with the local wave climate, with timescales to equilibrium
dependent on the available wave energy and the size of the littoral cell (Elshinnawy et al., 2017; C. W.
Thomas et al., 2016). The response time of the PNW’s shoreline is not trivial to determine because the region
experiences one of the most energetic wave climates in the world and most littoral cells are 10s of kilometers
in length, therefore requiring significant sediment volume movement for discernable shoreline orientation
changes. The observed multidecadal beach rotations may be the sole result of a rapid response to El Niño
winters or may indicate a fundamental shift of the equilibrium shoreline orientation resulting from low fre-
quency changes in the incident regional wave climate. Long-term multidecadal trends and oscillations in
wave climates have already been detected in the region (Komar & Allan, 2008; Ruggiero, Komar, et al.,
2010), with strong correlations to indices representing large-scale climate variability such as the
Multivariate El Niño-Southern Oscillation Index and the Southern Annular Mode (Barnard et al., 2015).
Modeling exercises have suggested that slight but persistent changes in the interannual wave climate will
lead to significant shifts in coastline shape (Johnson et al., 2015; Slott et al., 2006). However, the 1967–
2002 PNW endpoint rates (Ruggiero et al., 2013) include several decades during which wave observations
are sparse or nonexistent, complicating any statistical assessment of observed wave climate variability.

Considerable efforts have been devoted to averting the problem of limited wave data by developing physics-
based models (Booij et al., 1999; Tolman, 2002) and probabilistic techniques (e.g., Antolínez et al., 2018) to
obtain realistic representations (hindcasts) of the wave energy available to force morphologic change.
Several regional hindcast models are available for the PNW, including Wave Information Studies developed
by the U.S. Army Corps of Engineers (Hanson et al., 2009) and the Global Ocean Wave Reanalysis 2.0 (GOW
2.0) produced by I.H. Cantabria (Perez et al., 2017). These models use dynamically downscaled wind fields
beginning in 1980 to provide continuous hourly time series of wave parameters. Statistical downscaling
approaches require less computational effort than numerical models and can simulate many realizations
to robustly characterize variability and uncertainties resulting from the modeling framework (e.g.,
Antolinez et al., 2015; Rueda et al., 2017).

The purpose of this study is to reproduce plausible PNW shoreline evolutions between 1967 and 2002, includ-
ing the decades without wave observations, to investigate the dominant timescales of coastal evolution. The
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approach builds on recent advancements in downscaling atmospheric variability to local wave parameters
(e.g., Camus, Méndez, et al., 2014). A tailor-made index was derived from sea level pressure (SLP) fields and
specifically optimized to capture variability in longshore wave power. The LOngshore Sediment Transport
INdex (LOST_IN) serves as a proxy for wave driven longshore sediment transport developed to predict
potential offshore wave conditions (Hs, Tp, and θ) and alongshore varying nearshore equivalent conditions
based on atmospheric data. This study develops a LOST_IN for littoral cells on the northern Oregon coast,
which is then used to drive a simple shoreline evolution model (described in section 3) by deriving
multiple extended continuous wave histories for the north-central Oregon coast (section 3). The modeled
shoreline response to both interannual climatic events (El Niño) and multidecadal wave climate variability
is then used to assess the dominant drivers of long-term shoreline change (section 4). Sensitivities of the
modeling framework and implications for future applications of LOST_IN are then discussed (section 5)
followed by concluding remarks (section 6).

2. PNW Longshore Wave Power

Although the dominant processes controlling shoreline change can vary locally depending on antecedent
geology, sediment supply, and anthropogenic activity, the open coast is everywhere dynamically evolving
due to the dissipation of wave energy arriving from deep water (D. Roelvink & Reniers, 2012). The flux of sedi-
ment in the longshore direction is a consequence of wave stirring and subsequent transport by the longshore
current, which on dissipative and relative alongshore uniform beaches such as those in the PNW is to a first
order controlled by the longshore component of wave power:

Pl ¼ ECn sin θð Þ cos θð Þ ¼ 1
8
ρwgH

2Cn sin θð Þ cos θð Þ; (1)

where E is total energy, C is wave speed, n is the ratio of group to individual wave speed, and θ is angle
between wave direction and shore-normal (Komar, 1998a). The longshore wave power is typically calculated
at the break point after wave rays have refracted across the inner-shelf and begun to approach shore-
perpendicular. However, for a relatively alongshore uniform coast, the deep water wave condition can pro-
vide a first order proxy for the direction of longshore sediment transport at a regional scale.

Instantaneous alongshore power using hourly deep water conditions (from the GOW2 hindcast) and assum-
ing a west-facing beach is presented in Figure 2a. The summed total of every hour of northerly directed Pl
during the 35-year record was 2.49 × 109 W/m, while the summed total of every hour of southerly directed
Pl was �2.33 × 109 W/m. These approximately equal magnitudes support the stable coastline hypothesis
(Komar, 1986). While the instantaneous alongshore power (Figure 2a) reveals the significant seasonality in
the signal, the importance of interannual trends and variability are muchmore apparent through the integra-
tion of Pl with respect to time (cumulative longshore power, ∑Pl, Figure 2b). Steep slopes in the cumulative
longshore power corresponds to consistent periods when the longshore component of wave power is direc-
ted either north (positive slopes) or south (negative slopes). El Niños produce anomalously large northerly
magnitudes of cumulative longshore wave power compared to the climatological average winter
(Figure 2c), in large part due to anomalous southward 10°–15° latitude shifts of Eastern North Pacific storm
tracks (Peterson et al., 1990). Conversely, La Niñas are composed of southerly directed cumulative longshore
wave power. The analysis in Figure 2 is based on the GOW2 hindcast through the end of 2015, and thus does
not include the winter response of the major 2015–2016 El Niño (Barnard et al., 2017).

Annual fluctuations, interannual oscillations, and a long-term net northerly trend between 1980 and 2015 are
all evident in Figure 2b. The interannual and long-term signals contain similar order of magnitude in ∑Pl as the
El Niño signals that have previously garnered attention for hot spot erosion. In fact, during the 35-year hind-
cast, the summed total of hourly northerly directed Pl across all three highlighted El Niños accounts for only
11% of the total Pl (El Niño totals were taken as the sum between 1 October and 1 April the following year),
which suggest that predicting future coastal evolution depends onmore than just El Niño behavior. However,
it should be emphasized that both Pl and ∑Pl in Figure 2 are computed with a constant shoreline orientation
(North-South) and therefore do not account for the feedbacks between an evolving shoreline and the incom-
ing wave energy. Conclusions regarding which timescales ultimately control beach rotation thus require a
dynamic shoreline model accounting for the response of the beach.
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3. Modeling Headland-Bounded Shoreline Change

Observations of embayed beach rotation throughout the world have motivated recent efforts aimed at
predicting reorientation through modeling exercises with varying degrees of complexity. Both process-
based models (e.g., Daly et al., 2014; Hurst et al., 2015; Ratliff & Murray, 2014) and computationally efficient
equilibrium models (Blossier et al., 2017; Turki et al., 2013) have been used to identify important external
forcing processes, notably the wave direction, and internal system dynamics causing sediment exchange.
For the purpose of studying littoral cells with hot spot erosion driven by gradients in longshore sediment
transport, the present study uses a simple one-line model (described in section 3.1; e.g., Pelnard-Considere,
1956; Vitousek, Barnard, Limber, Erikson, et al., 2017). More complexity is introduced by creating the
LOST_IN as a proxy for potential longshore sediment transport during different climatic conditions
(described in section 3.2), and then deriving continuous nearshore wave conditions from the index
(section 3.3.).

3.1. One-Line Shoreline Model

A simple one-line model dependent on gradients in longshore sediment transport was developed to com-
pute shoreline change. In one-line models, cross-shore sediment exchange is typically assumed negligible
(i.e., sediment volume is not transported normal to the shoreline). Instead, the cross-shore profile shape is
maintained while the shoreline translates seaward/landward depending on the supply/removal of sediment
by longshore sediment transport. Temporal shoreline changes are related to alongshore gradients of the
sediment transport as

dy
dt

¼ � 1
hc

dQs

dx
; (2)

where Qs is the volumetric longshore sediment flux (m3/day), hc is the depth of closure, and x is the along-
shore axis. The CERC formula was used to define Qs as a function of the breaking wave height and the relative
angle between the wave crest and the shore,

Figure 2. (a) Instantaneous longshore power calculated with deep water hindcast waves offshore of northern Oregon from
1980 to 2015 with shaded regions marking the three most significant El Niños (red) and La Niñas (blue) during the
hindcast period according to the ONI index. (b) The same waves presented in (a) expressed as cumulative longshore wave
power, ∑Pl, and (c) all years of ∑Pl projected to a mean (black line) and standard deviation (shaded) during a climatologic
year beginning in July to capture a continuous winter response. Anomalous El Niños (red) and La Niñas (blue) are
denoted to highlight their opposing winter behavior.
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Qs ¼ K1Hb
5=2 sin2 θb � ϕð Þ; (3)

where Hb and θb are the breaking wave height and direction, respectively; ϕ is the local angle of the shore-
line; and K1 is an empirical constant set to the recommended value of 0.39 m1/2/s (Komar & Inman, 1970). It
should be noted that the CERC equation is known to be sensitive to the values of K1 (Smith et al., 2009;
Figure 3) and that the many semiempirical Qs equations available in the literature are also subject to
sensitivities to calibrated coefficients (e.g., Kamphuis, 1992; Mil-Homens et al., 2013). Critiques of
longshore transport formula suggest that values provided by such predictions should only be considered
as order-of-magnitude accuracy (Pilkey & Cooper, 2002). This order of magnitude accuracy was considered
acceptable in this study for the broader intention of investigating dominant trends of shoreline variability
as opposed to replicating exact magnitudes for engineering applications.

Due to the relatively large scale of PNW littoral cells (O[10s of kilometers]), the shoreline model is built to
account for alongshore nonuniformity of the nearshore wave field resulting from shoaling and refraction dur-
ing wave propagation across the shelf bathymetry and in the vicinity of headlands. A previously developed
library of dynamic wave transformations from deep water to the 20 m depth contour by the numerical model
Simulating Waves Nearshore (SWAN, Booij et al., 1999) was used to derive alongshore varying wave condi-
tions and thus alongshore varying Qs at shoreline nodes spaced 250 m apart. Spatial gradients of Qs were

Figure 3. Schematic of one-line shoreline change model applied to a headland-bounded littoral cell typical of the Pacific
Northwest. Deepwater wave conditions are propagated across the continental shelf with SWAN, extracted at the 20 m
contour and linearly shoaled to individual shoreline nodes. SWAN = Simulating Waves Nearshore.
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then derived numerically with zero flux boundary conditions imposed at adjacent headlands and jetties to
obtain spatially varying ∂y/∂t in an iterative fashion. As a result, themodeled shoreline evolution is fundamen-
tally dependent on the chronological order of the waves and the antecedent shoreline configuration.

The lookup table of SWAN runs covered the full range of potential wave conditions (9 Hs cases, 11 Tp cases, 13
θ cases, and 2 water level cases for a total of 2,184 SWAN model runs forced by Joint North Sea Wave Project
spectrums along the offshore boundary; Allan et al., 2015). The grid resolution was 100 × 100 m spanning
139 km in the alongshore and extending 72 km to deep water off the Oregon continental shelf with an outer
boundary located at the GOW2 hindcast in Figure 2. No model calibration was performed but validation and
sensitivities to various processes such as bottom friction were performed at multiple inner-shelf National
Data Buoy Center (NDBC) buoys (see Allan et al., 2015, for further details regarding the SWAN model config-
uration). The lookup table facilitates the quick creation of synthetic time series of alongshore varying near-
shore conditions based on an offshore time series of wave triplets. Fifty years of offshore waves can be
turned into 10s of kilometers of unique nearshore nodes on the order of minutes with an efficient interpola-
tion scheme across the library. This provides the shoreline model with considerable flexibility, allowing for
Monte Carlo simulation of the shoreline change due to different time series of offshore conditions.

Although the SWAN model could have provided breaking wave conditions relevant to the CERC equation,
those conditions are only applicable to the bathymetry from 2010 used by Allan et al. (2015) to develop
the lookup table. A base assumption of this study is that the shoreline translated seaward and landward over
multiple decades, which alters the nearshore bathymetry from the toe of the profile through the transient
sandbars and the edge of the wave break point in the surf zone. Instead, nearshore conditions are derived
with SWAN at the 20-m depth contour after transforming across the continental shelf and then further
shoaled and refracted with linear Airy theory to an assumed break point at the wave height to water depth
ratio of 0.78.

The depth of closure, hc, controls how much of the cross-shore profile sediment volume is distributed across,
with larger hc values resulting in less shoreline translation for the same volume of transported sediment. The
12-m contour is used for hc in this study based on previous observations of the depths to which PNW beach
profiles actively evolve (Ruggiero et al., 1998). The one-line model is closed by conserving sediment volumes
and creating impermeable boundary conditions at bounding headlands. The assumption of negligible net
sediment inputs/sinks is justified by the relatively straightforward sediment budgets of most north-central
Oregon littoral cells. Each cell is typically composed of largely relict sediments with small quantities contrib-
uted by modern sea-cliff erosion and streams and small quantities removed by estuary infilling (Komar,
1998b; Ruggiero, Buijsman, et al., 2010). The potential for sediment bypassing at headlands is assumed neg-
ligible for this study but is still an open question in the PNW region at long timescales.

3.2. Creating LOST_IN

Continuous wave conditions for time periods prior to available hindcasts must be derived before the one-line
model can reproduce the observed shoreline signal starting in 1967. Dynamical wave-generation modeling
approaches use surface wind stress to produce wave sea states, with forcing typically provided by atmo-
spheric models at some elevation above the ocean (i.e., winds at 10 m). Subsequent interpolations and para-
meterizations for friction and growth of swell waves are applied with a number of user decisions for
calibration (e.g., WAVEWATCH III Development Group (WW3DG), 2016). In contrast to dynamic downscaling
techniques, the approach developed in this study uses a statistical downscaling methodology to identify
atmospheric conditions most relevant to longshore sediment transport in the PNW. We employ a fundamen-
tal assumption that waves are correlated to the spatial and temporal variability of SLP. While this assumption
certainly has uncertainty, it is intended to avoid the cascading uncertainty associated with both atmospheric
and wavemodel parameterizations that is difficult to quantify with respect to space and time. The fundamen-
tal relationship between ocean waves and SLP fields has been utilized by a number of studies to investigate
seasonal wave height variability (Wang et al., 2012), as indicators for weather-type classifications of wave
climates (Antolinez et al., 2015; Camus, Menéndez, et al., 2014) and as predictors for future wave climates
(Casas-Prat et al., 2014; Perez et al., 2015; Wang et al., 2004).

LOST_IN is derived from SLP fields and the squared gradients of those fields obtained from National Centers
for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)’s Reanalysis 1 with
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temporal coverage every 6 hr since 1948 on a global grid with 2.5° resolution (Kalnay et al., 1996). While
statistical models can fundamentally be sensitive to the number of nodes used to define relationships,
higher resolution than that provided by the NCEP/NCAR Reanalysis was deemed unnecessary in terms of
statistical significance as well as dynamically uncertain in terms of relying on high resolution weather
products in years prior to quality satellite observations. SLPs for LOST_IN are only considered in regions
which generate wave energy directed toward the PNW coast (Hegermiller et al., 2017). The wave source
regions and travel times are identified using Evaluation of Source and Travel-time of wave Energy reaching
a Local Area (ESTELA) (Perez et al., 2014), which tracks wave generation directed at the GOW2 node in
deep water off of the PNW coast (45.893°N, 125.819°W, colocated with NDBC buoy 46089). ESTELA reveals
significant wave energy generation associated with extratropical cyclones in the North Pacific above 30°N
and in the South Pacific from low pressure systems circulating the Southern Ocean (Figure 4). The two
regions are considered separately in further analysis as representing the swell components from the North
and South Pacific Ocean.

Less than 1% of the wave energy reaching Oregon is generated in regions beyond the boundaries shown in
Figure 4. The average travel time for waves is calculated along each arc and the single day travel time contour
is used to define a third region representing the generation of local sea states (Figure 4). The travel time from
the farthest extent of each swell region is 18 days, indicating that the wave spectrum arriving on any given
day may be a combined function of distinctly different SLP fields occurring during as much as a 2- to 3-week
window. A method proposed by Hegermiller et al. (2017) is used to construct an atmospheric predictor field,

Figure 4. The spatial distribution of wave energy produced in the Pacific Ocean with the potential to reach the coast of
northwest Oregon is denoted by relative color (red = more energy, blue = less) as identified by Evaluation of Source and
Travel-time of wave Energy reaching a Local Area (Perez et al., 2014). Numbered contours identify the number of days it
takes waves from a particular part of the ocean to travel to Oregon. Great circle arcs emanating from Oregon denote
regions of North Pacific swell (blue), South Pacific swell (red), and local wind wave generation (black), with the end of the
lines denoting where 99% of the energy is produced.
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Pt, x, y, such that spatially distant regions of the ocean are defined by SLP fields corresponding to lagged times.
The example provided in Figure 5 demonstrates how Pt, x, y may deviate from the instantaneous SLP field. A
large low pressure system was located south of the Aleutian Islands between 10 and 12 February 2016,
generating swell waves that arrived to Oregon on the fifteenth. Although the instantaneous SLP field for
15 February does not contain the deep low pressure as a potential wave generator (Figure 5a), the Pt, x, y
field includes the memory of the system and retains the influence of the low pressure on the
instantaneous wave climate (Figure 5b). Deviations from the instantaneous SLP field are much greater at
farther contours. For instance, the strong high pressure in the central north Pacific on the fifteenth
(Figure 5a) was not present 6 to 8 days earlier (Figure 5b), and a large low pressure system was present
2 weeks earlier in the South Pacific that may have generated swell waves relevant to northwest Oregon on
the fifteenth (Figure 5b).

At this step, the user may make a choice of the timescale of climate resolution by averaging Pt, x, y fields to
daily or monthly fields. Dominant modes of atmospheric variability are then identified through a principle
component analysis (PCA) of the Pt, x, y fields, which quantitatively identifies common spatial patterns (empiri-
cal orthogonal functions, EOFs, function of space) and the temporal coefficients of those spatial patterns (PCs,
function of time). A separate PCA is performed for each region of wave generation (north, south, and local).
Physically, the decomposition identifies the locations and persistence of low and high pressure systems
throughout the Pacific Ocean that are relevant to the overall wave climate of north-central Oregon (i.e.,
the location of interest in this study).

However, not all atmospheric conditions generate wave conditions necessarily relevant for longshore sedi-
ment transport at this study site. Identifying the atmospheric conditions that contribute most to longshore
sediment transport in north-central Oregon is performed by statistically associating the temporal variability
of each EOF pattern with the cumulative ∑Pl time series at monthly scale between 1980 and 2015 (Camus,
Méndez, et al., 2014). A multivariate regression model is used to linearly combine statistically significant
EOFs, each with a temporally constant coefficient. Building the regression model is an iterative process,
first identifying which PC time series is best correlated with the time series of monthly∑Pl, then linearly
combining the first identified PC with every other PC to determine which pair-wise combination

Figure 5. (a) The SLP field for 15 February 2016 compared to (b) the atmospheric predictor built for the same day but considering the memory of the system by
utilizing SLP fields from up to 16 days prior to 15 February. Black boxes in (b) indicate low pressure systems that generated swell on different days in the North
(10–12 February) and South Pacific (31 January to 2 February) but that arrived to Oregon at the same time (the fifteenth). Gray contours in (b) represent the average
number of days for a wave generated at that location to travel to Oregon. SLP = sea level pressure.
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explains the most variance in the ∑Pl time series. The addition of more PCs to the index is continued until
a Fisher’s test determines that the improvement of the model is not significant beyond the added degrees
of freedom,

LOSTIN tð Þ ¼ ∑CRn�PCn tð Þ; (4)

where CR is a coefficient of regression and n is an index of the EOFs identified by the iterative process. The
coefficient is a free parameter in the model that is held constant through time.

The resulting tailor-made cumulative index, LOST_IN_Oregon, is specifically constructed to identify which
spatial patterns of atmospheric variability generate waves that have a longshore component of wave power
along the north-central Oregon coast. The index results in a continuous time series, extending records of
longshore wave power to encompass times without wave observations because the statistical model derived
by equation (4) is effectively a predictive equation dependent on only the atmospheric Pt, x, y fields.
Essentially, the methodology is able to identify any atmospheric pattern in the Pacific Ocean and predict
the resulting local longshore wave power at the study site. An example of LOST_IN_Oregon formed with
monthly averaged Pt, x, y fields is provided in Figure 6a. Positive (negative) values of LOST_IN_Oregon indicate
northerly (southerly) longshore sediment transport, with values around zero indicating waves that are either
small or arriving perpendicular to the shoreline orientation. The most common atmospheric patterns, or the
EOFs that explain the greatest variability in the PCA, do not necessarily contribute the most to
LOST_IN_Oregon because the nonlinear relationship with wave angle in equation (1) drives a preferential
choosing of atmospheric patterns correlated with weather systems approaching from oblique angles. For
the example provided in Figure 6, the first five EOFs chosen by the multivariate regression model in order
of importance, were the first, tenth, third, thirteenth, and sixteenth, resulting in a total 36 out of 2,792 possible
EOFs used to create LOST_IN_Oregon.

3.3. Time Series Simulation

LOST_IN indicates the obliquity of deep water waves given an offshore climate pattern, but does not provide
specific wave parameter triplets (Hs, Tp, and θ) nor alongshore varying breaking wave conditions necessary to

Figure 6. (a) Complete time series of LOST_IN_Oregon computed at monthly scale. Color ramp highlights variability of LOST_IN to denote which months’ data are
binned together to create the colored distributions of (b) wave height, Hs; (c) peak period, Tp; (d) mean direction, ϕ; and (e) alongshore wave power ∑Pl.
LOST_IN = Longshore Sediment Transport Index.
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drive the one-line model described in section 3.1. A two-step hybrid method is developed to determine
inputs for the shoreline model, first through a probabilistic step to obtain deep water waves and second
through a dynamic step to obtain nearshore wave conditions.

Deep water wave triplets are determined by associating specific ranges of LOST_IN values to probability dis-
tributions for wave parameters from the observed (hindcast) record. A one-dimensional K-means algorithm is
used to bin the index into uneven bin intervals, which ensures that each bin contains enough wave condi-
tions from a training time period to develop well-defined marginal and joint probability distributions. The
resulting distributions reveal distinct clusters within the wave climate (Figures 6b–6d). Large storm waves
approaching from steep southerly (northerly) directions form joint distributions representative of the positive
(negative) extreme of the index (Figure 6e). Joint probabilities of Hs, Tp, and θ are defined using student t
copulas with empirical distributions to ensure realistic longshore wave power approaches the coast from
the appropriate angles for each atmospheric condition.

Any particular LOST_IN bin is thus assumed to represent a generalized spatial climate pattern on user defined
timescale (i.e., daily and monthly), and during the occurrence of such a climate pattern a range of potential
offshore wave conditions could be generated (the copula distributions). Time series of nearshore wave con-
ditions are then simulated by randomly selecting offshore wave triplets from the appropriate LOST_IN bin
copula (e.g., Serafin & Ruggiero, 2014), and subsequently generating alongshore varying nearshore wave
conditions via the dynamic lookup table. Random selection from the copula to drive the shoreline model
is performed at the hourly scale, which is a high enough sampling rate that the shoreline model is effectively
driven by a particular climate’s distribution of wave conditions (i.e., randomly selecting ~720-hourly condi-
tions during a month reproduces simulated wave probability distributions representative of all previous
observed conditions during the climate). This technique is also beneficial for the stability of the one-line
model, as it prevents random selection of an extreme wave from being applied for too long and causing
unrealistic dy/dt (i.e., an entire 24 hr of steeply approaching peak storm waves).

Figure 7 demonstrates training and testing of hourly simulated waves derived from the monthly
LOST_IN_Oregon time series presented in Figure 6. In this example, a cumulative monthly ∑Pl is obtained
from all randomly selected hourly wave conditions during that month and compared to the observed
monthly ∑Pl derived from hourly GOW 2.0 conditions. The optimum number of monthly LOST_IN bins for
the Oregon coast was determined to be 30 by an iterative process seeking the strongest correlation between
observed and simulated ∑Pl. Sensitivity analyses have shown that the correlation during both training and

Figure 7. (a) Training of the LOST_IN methodology on monthly ∑Pl from GOW 2.0 between 1980 and 2004 with (b) one-to-
one comparison of ∑Pl after simulating wave triplets. (c) Time series and (d) one-to-one comparison of a testing time period
from 2005 to 2015 during which the methodology is only provided atmospheric data. GOW 2.0 = Global Ocean Wave
Reanalysis 2.0; LOST_IN = Longshore Sediment Transport Index.
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testing time periods is dependent on the length of the training. As expected, a longer training period pro-
vides the model with a greater variety of atmospheric conditions which results in a better separation of
the wave climate. Training during a time period with at least one major El Niño is particularly important
because the atmospheric conditions during these events are anomalous compared to other climatic condi-
tions. Note that the example provided in Figure 7 contains the 1982–1983 and 1997–1998 El Niño events
in the training period and therefore the approach is able to replicate the cumulative longshore wave power
during the major 2009–2010 event with significant skill.

4. Application to a North-Central Oregon Littoral Cell

As demonstrated in Figure 1, the littoral cells in north-central Oregon displayed consistent counterclockwise
shoreline rotations between 1967 and 2002. Here we focus on a 17 km long beach from Rockaway to
Manzanita as a representative stretch of the Oregon coast. The northern boundary of this cell is Cape
Falcon, while the southern boundary of the model is the jettied entrance to Tillamook Bay (Figure 1) which
effectively serves as a headland limiting sediment transport to the south. The town of Rockaway, OR (denoted
in Figure 1), is located along the southern portion of the cell, with much of the town eroding faster than
�1 m/year and localized rates of erosion reaching �3 m/year (Figures 8a and 8b; Ruggiero et al., 2013).
Small, unmaintained jetties approximately 200 m in length, at the entrance of Nehalem Bay, are responsible
for a locally large accretion signal at ~10 km in Figure 8b. However, for simplicity, the shoreline was smoothed
to remove the inlet and neglect the localized effect because the surf zone is often wider than the offshore
extent of these jetties and contextual evidence suggests complete bypassing of the littoral drift. The shore-
line was initiated with an equilibrium shoreline, the implications of which are described more in depth in
section 5.1.

4.1. Shoreline Change Results

The one-line model was initiated in 1957, because of inhomogeneities in the NCEP/NCAR reanalysis prior to
this year (Kistler et al., 2001), and run through September 2017 using randomly sampled waves derived from
the LOST_IN methodology for the entire time frame. Shorelines from the model were extracted for dates cor-
responding to the 1967 and 2002 data sets in Ruggiero et al. (2013) to produce the modeled endpoint rate
shown in Figure 8c, which exhibits a similar counterclockwise rotation to that observed. The ability of the
one-line model to replicate long-term littoral cell behavior supports the hypothesis that longshore sediment
transport is the dominant process producing the multidecadal rotations in Oregon. The modeled rotations
are largely limited to the 5 km adjacent to each boundary of the littoral cell, with the central 10 km exhibiting
change rates close to zero between these two dates. The CERC equation was not calibrated for this shoreline
change hindcast as the intention was to derive relative trends and explore dominant timescales of change.
However, greater (lower) K1 coefficients in the CERC equation result in more (less) of the littoral cell’s central
shoreline experiencing rotational behavior due to the diffusion of stronger (weaker) gradients into the rest of
the shoreline domain. This process is nonlinear with respect to changing magnitudes of K1, but the same
general counterclockwise rotation was observed regardless of the coefficient used.

The modeled multidecadal rotation also provides confidence that the one-line model may be realistically
simulating shoreline behavior at interannual timescales. This notion is supported by a direct comparison to
shorelines extracted from seasonal beach profile surveys. Cross-shore profile data have been collected with
RTK GPS approximately quarterly since October 2004, providing 46 different dates for assessing temporal
behavior (Allan & Hart, 2008). The surveyed data inherently contain all nearshore processes acting on the
beach, including cross-shore exchanges of sediment between the sandbar and beach face occurring at sea-
sonal scale. The one-line modeling framework presented in this work assumes this process is essentially noise
superimposed on the long-term trends, thus shorelines for comparison to the model are extracted at the
3.7 m contour relative to NAVD88, a beach level considered to be more indicative of long-term coastal evolu-
tion because it is typically above the region of highly mobile intertidal sandbars and seasonal berm develop-
ment (Cohn et al., 2017). Two separate transects from the central and southern portions of the Rockaway
littoral cell are compared in Figure 9 with the beach profile data set. The data have been transformed to
model coordinates by setting the first observation to be the same position as the modeled shoreline at that
particular date.
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Model results exhibit comparable behavior to observations at the southernmost transect in both magnitude
and timing of shoreline movement during the 13 years of available data. The model successfully predicts the
general observed trend of accretion from approximately 2006 to the late 2000s, the erosion during the El
Niño Modoki winter of 2009–2010, and the following 6 years of general accretion before another El Niño
induced erosion event in 2015–2016 (Figure 10b). It is notable that behavior on interannual timescales
appears to be predicted with reasonable skill (i.e., erosion and accretion between 2015 and 2017).

Model results and data also display general agreement in the middle of the littoral cell in terms of the overall
accretion pattern during the entire time period. However, the model does not capture the magnitude of the
observed accretion. This discrepancy could be either due to uncertainties in the modeling framework or due
to unmodeled natural processes. Previous studies in the region have documented cross-shore feeding from
the shoreface to the beach (Ruggiero, Buijsman, et al., 2010), a process which could be contributing to the
long-term evolution of the Rockaway littoral cell but is unaccounted for in the present version of the one-

Figure 8. (a) The observed shorelines for the Rockaway littoral cell in 1967 and 2002 and (b) the corresponding endpoint
rate shoreline change signal between the two shorelines. (c) The endpoint rate produced by extracting shorelines from the
model on the same corresponding dates and (d) the temporal behavior of several shoreline nodes at select distances
from the southern boundary with large El Niños highlighted by red shading (alongshore location also noted by
corresponding color in (c)).
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line model. The simplicity of using an alongshore constant K1 =0.39 in the CERC equation could also be
contributing to the under prediction of beach response. However, the Shoreline Protection Manual’s
recommended value of 0.39 has been previously critiqued as resulting in an over prediction of quality data
sets (Bayram et al., 2007; Smith et al., 2009). Greater K1 coefficients produced larger shoreline change
signal in the middle of the domain, but also negatively affected comparisons at the ends of the domain.
There is the potential that calibrating an effective K1 for each transect in the alongshore may have

Figure 9. Temporal comparison of the 3.7 m contour extracted from discrete beach profile surveys (black dots) and con-
tinuous shoreline positions from the one-line model for (a) a shoreline node in the middle of the cell and (b) a shoreline
node near the southern extremity.

Figure 10. (a) Significant wave height, Hs; (b) mean direction, θ; and (c) ∑Pl distributions for 30 bins composed of monthly Longshore Sediment Transport Index data
(similar to Figures 6b, 6d, and 6e). (d), (e), and (f) are distributions of Hs, θ, and ∑Pl, respectively, for distributions composed of daily Longshore Sediment Transport
Index data.
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produced result of closer magnitude to the observations, but such extensive calibration was beyond the
scope of this investigation.

Despite the potential effects of cross-shore processes, the direct comparison with survey data indicates that
the model provides insight to shoreline behavior between 1967 and 2002. Seasonal, interannual, and multi-
decadal signals are all apparent when the shoreline position of specific alongshore locations are tracked
through time (Figure 8d). The convention in Figure 8 is such that positive (negative) values are shoreline
advance (retreat) relative to the initial shoreline position, which for the four locations provided at the south-
ern end of the littoral cell corresponds to clockwise (counterclockwise) rotations. The shoreline node 0.5 km
from the southern boundary (blue) exhibits the greatest variance, including the greatest retreat during El
Niño winters when hot spot erosion occurs due to anomalous waves from the south. However, the simulation
suggests that the interannual to multidecadal oscillations have a larger effect on whether the beach is in an
eroded or accreted state relative to the initial conditions. For instance, the hot spot erosion during the 1997 El
Niño produced the most landward shoreline in the simulation, but the El Niño accounts for less than 40% of
the total retreat observed between 1991 and 1997 due to the cumulative erosional trend during the 5 years
preceding the El Niño. A similar erosional trend began prior to the 1982–1983 El Niño, indicating that littoral
cell rotations in the PNW are not simply a consequence of anomalous sediment movement during individual
El Niño winters followed by subsequent reorientation, but rather dominated by decadal scale oscillations.

The modeled shoreline at 1.5 km from the southern boundary (red) exhibits decadal oscillations with less
intra-annual variance (Figure 8d) than immediately adjacent to the boundary. Modeled shoreline variability
at 2.5 (green) and 3.5 km (purple) from the boundary are dominated by decadal timescales with no interann-
ual or intra-annual variance. Model results at these locations show a general trend of clockwise rotation from
1958 to approximately 1980 and then counterclockwise rotation to the present. The reversal time between
clockwise and counterclockwise rotations also appears to be a function of distance from the jetty, as the most
accreted location of each node occurs across a lagged 5-year window between 1980 and 1985. This behavior
provides an indication for the response time of the beach, suggesting that the gradients in longshore trans-
port driving rotations propagate in the alongshore on interannual timescales.

The interannual variability in the shoreline behavior can significantly alter the relevance of any linear shore-
line change rate (endpoint or regression) obtained from historical data and projected into the future. Such
change rates are aliasing an oscillating signal and tell a different story depending on when the observation
of shoreline position is made. The largest potential endpoint rate for the extremities of the littoral cell
(between the winter of 1979 and summer of 1985) results in shoreline change rates 8× greater than the end-
point rate reported on between 1967 and 2002. However, an endpoint rate from 1985–1992 results in
comparable magnitude change rates but in the opposite direction of rotation, while endpoint rates
computed between 1972–1995 and 1965–2016 give change rates close to zero and would indicate no rota-
tion of the beach.

5. Discussion
5.1. Model Sensitivity
5.1.1. Initial Shoreline
Initiating the shoreline model with the measured shoreline position in 1967 produced unrealistic shoreline
change trends on the order of ~10 m/year. Fundamentally, the presence of any gradient in longshore trans-
port is a function of the disequilibrium between the shoreline configuration and the wave condition
(Elshinnawy et al., 2017). In natural systems with closed sediment budgets, a consistent shoreline change is
the result of an inherited orientation reorganizing to new wave conditions. Therefore, the quality of any mod-
eled shoreline change signal is dependent on both the quality of the initial shoreline position and the quality
of the wave information. If an observed (true) shoreline is used in the model and the modeled wave climate is
biased slightly from the true wave direction, or if the wave transformation dynamics between the offshore
and the shoreline are not represented correctly, then the subsequent modeled shoreline evolution is not
representative of true shoreline evolution but simply the model attempting to reach the equilibrium shore-
line orientation specific to that wave climate. The resulting gradients in sediment transport at any single time
step may be very small, but the cumulative effect of decades of biased waves would appear in the one-line
model results as a multidecadal shoreline rotation.
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The one-linemodel results in section 4 were initialized from an equilibrium shoreline specific to the Rockaway
littoral cell SWAN lookup tables to ensure that the modeled multidecadal rotation was not simply a reorien-
tation of the beach to biases present in the SWAN derived wave climate. To achieve an equilibrium shoreline,
the one-line model was first initialized with a straight shoreline subject to a synthetic climatological wave cli-
mate. The hindcast wave climate was binned into monthly distributions (i.e., all January waves grouped to a
single distribution, and all Februaries), and the synthetic wave climate consisted of a time series of hourly
wave conditions created by randomly selecting from the appropriate month during simulations that were
run until annual shoreline change in the one-line model was negligible. Simulations took on the order of
100s of years to reach shoreline orientation equilibrium, and negligible change was determined when con-
secutive December shorelines in the model were less than 1 meter different at all model nodes. The synthetic
climate used to generate the initial equilibrium shoreline effectively removed decadal and interannual oscil-
lations in the wave climate as well as the impulsive response caused by El Niños, but retained the mean
monthly wave climate to produce a seasonal oscillation between summer and winter to create the concavity
of the embayed beach. The same equilibrium shoreline orientation was obtained by evolving an initially
straight shoreline and by evolving the observed 1967 shoreline (Ruggiero et al., 2013), suggesting that the
methodology described above produces an equilibrium shoreline purely dependent on the incident SWAN
wave climate.

Fitting a linear regression to the equilibrium shoreline suggest a 1.5° more westward facing beach compared
to the true shoreline. This difference is relatively small when considered within the context of a 35° seasonal
shift in wave direction, but the cumulative effect of this small difference in angle along the 17 km long littoral
cell modeled here is an ~450-m difference at the extreme ends of the beach, which was likely the cause of the
unrealistic shoreline change rates when initiating the model with the true 1967 shoreline. It is possible that
SWAN may not be capturing all physical processes affecting wave propagation. The 1.5° shoreline angle off-
set could also simply be a consequence of discretizing the wave spectrum into directional bins (5° bins).
5.1.2. Temporal Averaging of LOST_IN
Climate indices are typically expressed as either daily or monthly values. The temporal resolution of LOST_IN
is an arbitrary user-defined parameter controlled by the time period over which SLP fields are averaged. The
probability distributions of potential wave conditions derived from daily versus monthly LOST_IN follow the
same general trend highlighted in Figure 6, separating the wave climate into conditions approaching from
steep angles with large waves. Daily distributions capture noticeably greater variability in wave directions
than the monthly bins, and reveal several wave height distributions almost entirely above 4 m (Figure 10).
These bins are identifying specific atmospheric conditions related to storms on the order of a day to a week
in length that are otherwise smoothed when applying LOST_IN at the monthly timescale. This smoothing is
most likely the dominant mechanism leading to some of the poorly simulated large southerly longshore
fluxes in the monthly example provided in Figure 7. Closer analysis revealed that these southerly directed
fluxes are due to storm events less than 3 days in length occurring during the transition from summer to fall.
The rest of the month is composed of summer-like conditions concealing the strong longshore flux condi-
tions at the tail of tri-variate copula distributions dominated by calm waves. The daily temporal average is
thus capable of resolving the individual meteorological events, while the monthly average is more represen-
tative of the large-scale climate variability.

The decision for what timescale to use in developing LOST_IN ultimately depends on the desired processes
being resolved. Figure 11a provides a comparison of ∑Pl derived from 100 simulations of daily LOST_IN and
100 simulations of monthly LOST_IN between June 2015 and June 2017. Randomly sampling from the same
copula of wave conditions throughout an entire month neglects the intramonthly chronology of waves and
produces a consistent linear trend for ∑Pl within each month (red envelope in Figure 11a). Such an assump-
tion is unrealistic with respect to the chronology of individual weather systems, but the overall correlation
between modeled ∑Pl and hindcast ∑Pl between 1979 and 2015 is better for monthly LOST_IN (R = 0.92;
Figure 11b) than for daily LOST (R = 0.82; Figure 11c). The reduced correlation at the daily scale is a function
of daily LOST_IN resolving greater variance in both the atmosphere (less smoothing of SLP fields) and long-
shore wave power (daily storm events), as well as an order of magnitude increase in model decisions by simu-
lating from different LOST_IN wave climate distributions each day. Daily LOST_IN could be useful for any
application where the desired result is to identify a localized erosion hazard dependent on the chronology
of individual storm events. However, direct comparisons of the shoreline model results from monthly
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LOST_IN versus daily LOST_IN suggest that the same interannual to decadal behavior is captured by the
monthly LOST_IN (Figure 11d). The greater variance generated in ∑Pl from daily LOST_IN (Figure 11a) does
not necessarily translate to significantly different shoreline simulations because the one-line model
dynamically responds to the imposed wave climate, and because the long littoral cell requires large
volumes of sand to be transported to produce a discernable rotation.

Although the results presented in Figure 11d are inherently a product of the one-linemodel assumptions and
the large alongshore extent of the modeled littoral cell, the similarity of the shorelines presented for a model
that resolves daily weather and one that lacks a chronology component suggest that rotational signals in the
PNW may be less sensitive to individual weather events than the broader climate. The bounds associated
with the 100 simulations of each model shown in Figure 11a quantify uncertainty inherent to the LOST_IN
methodology, but also represent a range of possible shoreline change scenarios inherent to the climate of
the last ~60 years. We have observed only one iteration of the coupled climate-meteorological system, where
hourly weather is effectively noise super imposed on the large-scale signal. The framework presented in this
paper creates the potential for examining multiple iterations of the climate, performed in a Monte Carlo
sense. The computational efficiency associated with the statistical downscaling approach is order of

Figure 11. (a) One hundred simulations of ∑Pl frommonthly LOST_IN (red) and daily LOST_IN (blue) where shaded areas are
the maximum and minimum bounds of the simulation envelope and bold lines are the mean. (b) One-to-one correlation
of monthly ∑Pl and monthly LOST_IN from 1979 to 2015 and (c) one-to-one correlation of daily ∑Pl and daily LOST_IN for
the same time period. (d) Direct comparison of the same shoreline node in simulations with daily LOST_IN (red) and
monthly LOST_IN (blue) waves during the most recent decade. LOST_IN = Longshore Sediment Transport Index.
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magnitude faster than performingmultiple perturbations of a dynamic atmospheric model and coupling that
with a wave model.

5.2. Meteorology of LOST_IN Bins

Several recent studies have correlated wave behavior and/or geomorphological response with climate
indices (Barnard et al., 2015; Castelle et al., 2017; Poirier et al., 2017; T. Thomas et al., 2011). LOST_IN is unique
in that it is an index optimally designed to emphasize a parameter drivingmorphological evolution (∑Pl) while
also retaining information concerning the climate that drives the evolution. Averaging the SLP fields within
each LOST_IN bin provides a representative spatial pattern of the weather systems driving wave generation
(Figure 12). Negative extremes of LOST_IN are associated with a strong high pressure system offshore of
Oregon in the northeast Pacific Ocean (upper left corner of Figure 12), while positive extremes of LOST_IN
exhibit strong Aleutian low pressures in the north Pacific Ocean and suppressed high pressures off of
Southern California (lower right corner of Figure 12).

The location of the high pressure system in the northeast Pacific effectively steers storms tracking from west
to east across the middle latitudes. A first-order approximation of storm tracks is the 1,014 mb geostrophic
wind guide (e.g., Peterson et al., 1990), which shifts from making landfall ~55°N (Glacier Bay National Park,
AK) in negative LOST_IN values to landfalls ~38°N (San Francisco, CA) during positive LOST_IN (dotted lines in
Figure 12). The waves generated by a storm approaching southern Alaska and British Columbia propagate
south to drive a southerly longshore component of wave power in Oregon, while those storms approaching
central California propagate waves north to drive a northerly component of wave power. The most extreme
LOST_IN bins identify storms that have been steered around the blocking high and low pressures such that
they directly hit Oregon either steeply from the north (negative, upper left of Figure 12) or from the south
(positive, lower right of Figure 12).

Climatologically, LOST_IN automatically identifies the likely magnitude and direction of a longshore com-
ponent of wave power associated with potential storm tracks relative to the location of the study site. The
quantitative link between the specific coastal process of interest and the spatial climate is unique relative
to other statistical downscaling techniques. Other studies have developed techniques linking meteorologi-
cal conditions with wave distributions (e.g., Antolinez et al., 2015; Rueda et al., 2017) by performing clus-
tering analyses of the meteorology a priori to knowledge of wave conditions and forming coincident Hs,
Tp, and θ distributions directly dependent on the atmospheric clusters. The present study differs from such
previous work by clustering with respect to ∑Pl and is therefore identifying a specific nearshore process
and the coincident meteorological conditions relevant to that process as opposed to vice versa. Rather
than attempting to quantify all of the wave climate and atmospheric variability with the dynamic climate,
the tailor-made climate index reduces dimensionality to minimize statistical uncertainty associated with
the primary desired parameter. Wave climate variance was reduced from three dimensions to one dimen-
sion through the cumulative wave power parameter ∑Pl, while the multivariate regression further reduces
the atmospheric variance needed to capture extremes in the meteorology forcing longshore wave power
by choosing only EOFs relevant to this process. Such a framework could prove useful for identifying dom-
inate meteorological patterns driving other coastal morphodynamic processes that are dependent on dif-
ferent forcing parameters (e.g., total wave energy driving evolution in a cross-shore equilibrium model;
Yates et al., 2009).

5.3. Multidecadal Wave Climate Variability

The modeled shoreline evolution shown in Figure 8d suggests that a fundamental shift in the wave climate
relevant to coastal change in north-central Oregon occurred in the late 1970s. The shift is easier to discern
through extended ∑Pl time series of wave simulations produced from LOST_IN (Figure 13). A cumulative trend
of predominantly southerly wave power persisted for several decades before a reversal and subsequent
cumulative northerly wave power during the 1980s and 1990s. This trend reversal approximately coincides
with a shift of the Pacific Decadal Oscillation (PDO) from its cool to warm phase (Figure 13a; Xue et al.,
2014). Another regime shift of the PDO from warm back to cool is thought to have occurred in the late
1990s and persisted for two decades, which aside from the El Niño of 2009–2010 is composed of predomi-
nantly southerly directed ∑Pl. PDO is the dominant EOF mode of North Pacific sea surface temperatures,
but an emerging consensus has identified that its behavior is not a single phenomenon but more a
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function of multiple processes occurring in a much larger region, including remote and tropical forcing
through atmospheric teleconnections (Newman et al., 2016). It is perhaps unsurprising that the extended
∑Pl record contains what appear to be coincident regime shifts with the most dominant mode of

Figure 12. Average sea level pressure fields for LOST_IN separated into 30 bins. Color of the continents denotes the
LOST_IN bin (same coordinated color as Figure 6) and the sea level pressures over the Pacific Ocean are presented as
blues denoting lower than average pressures and reds denoting higher than average. Black dashed lines denote the
1,014 mb contour as a proxy for storm tracks moving from west to east across the North Pacific. LOST_IN = Longshore
Sediment Transport Index.
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variability in the ocean adjacent to the PNW, but statistically significant correlations will require a longer
observation window than the approximately one and a half PDO oscillations since the 1940s.

The approximately decadal scale oscillations observed in the shoreline results are superimposed on the PDO
timescale in Figure 13. This insight regarding decadal and multidecadal behavior may change how coastal
managers address future hazards in the region. Although quantitative data are limited, anecdotal evidence
throughout the region provides examples of sand being passed back and forth between littoral cell extremi-
ties on comparable timescales to those revealed by LOST_IN. Pacific City homeowners (located in the north-
ern end of a littoral cell ~45 km south of the Rockaway littoral cell; Figure 1) built riprap structures in the late
1970s due to persistent erosion of dunes and bluffs, which appears to coincide with three decades of south-
erly directed ∑Pl which would have moved sand from Pacific City to the south (Figure 13). By 1984, the riprap
was buried beneath sand and the city needed excavators and bulldozers to dig houses out of the growing
dunes (Allan et al., 2015). The time line of riprap burial coincides with the decade of northerly ∑Pl during
the 1980s. The town of Neskowin at the opposing end of the littoral cell once had plenty of sand while
Pacific City was hardening its shoreline, but has since installed multiple riprap structures in response to
several decades of the beach in a persistent counterclockwise rotational state. While future coastal planning
efforts along the north-central Oregon coast will need to consider sea level rise (Lipiec et al., 2018), coastal
decision makers should also weigh the significant cost of building hard riprap structures within the context
of interannual to multidecadal littoral cell rotations identified by this study.

5.4. Additional Applications

One advantage of statistical downscaling techniques such as LOST_IN is the ability to apply the technique to
many locations with relatively little computational effort as compared to dynamic downscaling. LOST_IN can
be applied to all headland-bound beaches in a region, or an ocean basin, to identify the dominant timescales
and climatologies most affecting beach rotations or to investigate the spatial variability of such processes
(e.g., Barnard et al., 2015). The ability of LOST_IN to fill in gaps in buoy records or extend the record of ∑Pl
would be particularly useful in regions where wave information is scarce. The continuous time series pro-
duced by LOST_IN are essential for morphodynamic models dependent on chronological wave events such
as the one presented in section 3, but the overall complexity of the methodology can be simplified by

Figure 13. (a) Monthly PDO index values (obtain from University of Washington’s JISAO climate data archive) with a 2-year
rollingmean super imposed (black line) and (b) the mean (red line) and envelope of 100 simulations of hindcast cumulative
longshore power ∑Pl using hourly wave derived from daily LOST_IN, as well as the GOW2 ∑Pl time series used to
calibrate LOST_IN (black line). LOST_IN = Longshore Sediment Transport Index; GOW2 = Global OceanWave Reanalysis 2.0.
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transforming deep water wave conditions to the nearshore with linear shoaling and refraction rather than the
dynamic lookup table used in this study.

Equation (4) could also be applied to forecasted SLP fields from general circulation models (GCMs), turning
LOST_IN_Oregon into a predictive tool. Current changes to the global climate are projected to alter large-
scale atmospheric circulations; shift weather and wind patterns, storm tracks, and storm intensities; and con-
sequently alter future wave climates throughout the world (Erikson et al., 2015; Hemer et al., 2013). However,
the quality of the ∑Pl prediction is inherently tied to the ability of GCMs to reproduce relevant timescales of
variability, and the North Pacific is a region where GCMs have difficulty recreating low frequency modulations
of the climate (Branstator et al., 2012; Comeau et al., 2017). Ad hoc hypothetical climates could still be con-
sidered using the LOST_IN framework until GCMs replicate the necessary timescales of complexity. Themeth-
odology identifies the relevant EOFs and associated PC chronologies during the last 60 years of El Niños,
providing the necessary information to simulate atmospheric variability and investigate how predicted
changes in El Niño frequency may affect pocket beach rotation behavior in the 21st century.

6. Conclusions

This paper presents LOST_IN_Oregon, a framework developed to statistically downscale climate variability
through an index optimized to capture longshore wave power as the environmental force morphologically
controlling shoreline evolution. The framework creates a predictive equation for longshore wave power
through a multivariate regression between historical ∑Pl and EOFs of SLP fields in regions generating wave
energy that propagates to north-central Oregon. The predictive equation can be applied to any time period
with SLP data (or SLP forecasts), extending records of ∑Pl by filling in gaps in wave observation records or
investigating possible shoreline change scenarios associated with alternate iterations of the climate-
weather system.

Shoreline model results utilizing wave simulations derived from LOST_IN reveal timescales of
headland-bound littoral cell rotation in the PNW not previously identified from the available observations.
As anticipated, El Niños are a relevant climate phenomenon contributing to rotation, but such events are
superimposed on interannual and multidecadal climate oscillations that result in persistent shoreline rota-
tions. A relationship between the spatial influence of headlands and the shoreline’s sensitivity to interannual
wave climate variability was also discernible in the simple one-line model results. Close to the headlands,
interannual to decadal oscillations contribute to rotational signals, while the impact of El Niño winters on
alongshore processes is limited to localities in the immediately vicinity of headlands, inlets, or jetties. The
strong dependency of shoreline orientation on wave climate variability suggests that projected changes in
the 21st century climate (i.e., increased frequency of El Niños, Cai et al., 2014, and northerly shifts of storm
tracks, Erikson et al., 2015) may have a profound effect on the coastal evolution of the PNW.
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