From the Global to the Local: Managing Climate Change Impacts across Scales

Edward L. Miles
School of Marine Affairs
Climate Impacts Group
Center for Science in the Earth System (CSES), JISAO
University of Washington
Seattle, WA. 98195
Acknowledgements

• Ze’ev Gedalof - Forest Resources, UW & CIG
• Alan Hamlet - Civil & Environmental Eng., CSES/ CIG
• Dennis Lettenmaier - Civil & Environmental Eng., CSES/ CIG
• Nathan Mantua - Assoc. Dir. CSES/CIG; Assoc. Prof. SAFS
• Philip Mote - CSES/ CIG, State Climatologist
• Richard Palmer = Civil & Env. Eng. & CSES/CIG
• Eric Salathe - CSES/CIG
• Amy Snover - Asst. Dir. CSES/CIG
• Matthew Wiley - Civil & Envir. Eng. & CSES/CIG
Outline

• The Framework: Linking the Global to the Local.
• Serious Implications for Planning & Policy.
• The Context: Mega-Regional & Regional Drivers & Impacts.
• Projections of Climate Change & its Impacts.
• Summary: Trends & the Take-Away Message
The Framework:

Linking the Global to the Local
On Panarchies, Nonlinearities, Thresholds, Vulnerability, & Resilience

• Social-Ecological Systems (SESs) exist as Panarchies, i.e., adaptive cycles interacting across multiple spatiotemporal scales (Holling, 1973; Walker et al. 2004). Condition of great significance for dynamics.

• Resilience = Capacity of system to absorb disturbance & reorganize while undergoing change. Problem that systems consist of nested dynamics operating at particular org scales; latter not always congruent.

• C.C. Impacts present difficulties because require mgmt of changing rates of change @ multiple space/time scales.
Panarchies, cont’d.

• Resilience contains 4 faces:
 • Latitude = max amt disturbance before losing ability to recover (the failure threshold).
 • Resistance = ease or difficulty of changing the system.
 • Precariousness = how close system may be to failure threshold.
 • Panarchies contain nonlinearities ⇒ surprises in resilience, resistance, & precariousness.
• Adaptability both autonomous (homeostatic) or learned (deliberate).
Table 1: Residence Times of Greenhouse Gases in the Atmosphere

<table>
<thead>
<tr>
<th>GHG</th>
<th>Residence Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>50-200 Years</td>
</tr>
<tr>
<td></td>
<td>(The range varies with sources and sinks and depends on the equilibration times</td>
</tr>
<tr>
<td></td>
<td>between atmospheric CO₂ and terrestrial and oceanic reserves.)</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>12 years</td>
</tr>
<tr>
<td>Nitrous Oxides (N₂O)</td>
<td>120 years</td>
</tr>
<tr>
<td>Chlorofluorocarbons</td>
<td></td>
</tr>
<tr>
<td>CFC-11</td>
<td>50 years</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>12 years</td>
</tr>
<tr>
<td>Perfluorocarbon (CF₄)</td>
<td>50,000 years</td>
</tr>
</tbody>
</table>

Critical Limiting Conditions for Societal Response

Table 2

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere (lower atmosphere) mixing alone</td>
<td>1 year</td>
</tr>
<tr>
<td>Atmosphere to surface ocean layer</td>
<td>4 years</td>
</tr>
<tr>
<td>Surface ocean layer to intermediate layer below the thermocline</td>
<td>50-200 years</td>
</tr>
<tr>
<td>Venting from ocean above thermocline to atmosphere</td>
<td>100 years</td>
</tr>
<tr>
<td>Turnover time of deep ocean basins</td>
<td>1000 years</td>
</tr>
</tbody>
</table>

Source: IPCC 1990 *Climate Change: The Scientific Assessment*
Linking the Global to the Mega-Regional, the Regional, and the Local

Techniques & Drivers
Global models must be downscaled for regional studies

Salathe, 2006
Two Important Patterns of PNW Climate Variability

The Pacific Decadal Oscillation

A history of the PDO

monthly values for the PDO index: January 1900–December 2003

El Niño/Southern Oscillation

A history of ENSO

Monthly values for ENSO3.4 index: 1900-1998
CLIMATE VARIABILITY (ENSO/PDO) AND CHANGE

Sea level rise

THE COASTAL ZONE

HYDROLOGY

FORESTS

SALMON

HUMAN ACTIVITIES

CANADA

Columbia River Basin

Washington

Oregon

Idaho
The Context

- Strong regional coherence in variability of PNW climate combined with heterogeneity in microclimates & ecosystems as result of topography.
- The East-West divide really important re P/T differences.
- Variations in time more important than variations in space re P/T but P/T uncorrelated.
The Context, cont’d.

- Current impacts of CV a function largely of past human choices about mgmt. strategies, institutions, & technologies.
- Future impacts of CC also depend on similar choices people make today.
- Vulnerability determined by interplay among climate, natural systems, & human choices.

Source: PSAT. 2005. State of the Sound
Recently Updated Population Growth Estimates for Puget Sound Region to 2040, OFM, June 2007

- Puget Sound = 5 million (2007 = 3.5m)
- Snohomish = 1.052m (2007 = 672K)
- King = 2.46m (2007 = 1.8m)
- Pierce = 1.094m (2007 = 773.5K)
- Kitsap = 380K (2007 = 243K)
- Whole State current pop. 6.5m; previous pop. est. to 2050 = 11m
Hydrologic Characteristics of PNW Rivers

![Graph showing normalized streamflow for different hydrological characteristics over months.]

- **Snow Dominated**
- **Transient Snow**
- **Rain Dominated**

The graph illustrates the seasonal variation in normalized streamflow for different hydrological characteristics in PNW rivers.
The Columbia Basin Hydrosystem

• Major source of hydropower in the PNW
• Navigation and recreation uses
• Major source of irrigation for the interior PNW
• Threatened and endangered salmon runs

Managed streamflow
Natural streamflow
Observed Regional Climate Change in the Mega-Region: The American West
Trends in 20th Century PNW Temperature

Almost every station – urban and rural – shows warming

PNW climate is already changing, possibly due (in part) to climate change

73% of stations show decline in April 1 snow water equivalent

Numerous sites in the Cascades with 30-60% declines

Snow water equivalent trends, 1950-2000

Trends in April 1 SWE, 1950-2000

Mote 2003(b)
BASIN SENSITIVITY TO WARMING

Hydrologic Classification of the WA WRIs Based on the Fraction of Oct-Mar Precipitation Stored in the Peak SWE for the 1950 Temperature Regime
Since 1950, Puget Sound snowpack and stream flows are changing in ways consistent with projected climate change impacts:

- April 1 snowpack has been declining. Losses are largest in mid- and lower elevations.
- Snowmelt is occurring earlier: 2.1 days/decade; total 12.
- Summer freshwater inflows have decreased 18%.
- Probability of extremes is changing (prob. for both unusually low and high daily inflow has increased)
Scenarios of Climate Change in the Pacific Northwest

Climate Impacts Group
2001 & 2005
As with global projections, regional temperature projections are in close agreement through mid-century. Assumptions about global changes in population, growth and patterns of economic development, and the Earth’s sensitivity to these changes have a large impact on projected changes beyond the 2050s.

21st Century Pacific Northwest Warming Trends
The coldest locations are less sensitive to warming
Streamflow patterns are temperature dependent

Western Washington Precip

Average Flow (cfs)

Skagit River
- early 20th century
- late 20th century
- 2040s

Quinault River
- early 20th century
- late 20th century
- 2040s

+3.6 to +5.4°F
(+2 to +3°C)
Impacts on Columbia Basin hydropower supplies

- **Winter and Spring:** increased generation
- **Summer:** decreased generation
- **Annual:** total production will depend on annual precipitation
- **Plus:** impacts on electricity demand
 - ↓ in winter
 - ↑ in summer

NWPC (2005)
Impacts on Seattle’s water supply

- reduced summertime inflows, increasing the size and extending the time of the summertime inflow-demand deficit
 - this is common to all our region’s municipal (surface) water supplies

Caution

• Cannot attribute these changes solely to global warming; land-use & flow regulation play role as well.

• Some changes consistent with global warming; total annual declines may be associated with PDO.
Simulated Average Runoff for the Puget Sound Basin

- Blue line: 20th century conditions
- Orange line: 4.1°F (2.3°C) warmer
Simulated 21st Century Snowpack & Streamflow: Puget Sound

- For warming of 2.3°C (4.1°F), 2040s or later, Oct-March runoff increases by c.25% & April-Sept runoff decreases by c.21%.
- Reduced MT. snowpack.
- Greater winter streamflow ⇒ more P as rain =flooding.
- Earlier peak flows.
- Reduced summer flows.
A warmer climate and flooding, stormwater & wastewater management

• At mid-elevations more precipitation will fall as rain and less as snow, leading to an increased frequency of river flooding

• At high elevations there are competing factors:
 – reduced snowpack may reduce flood risks in spring
 – elevated spring soil moisture may increase vulnerability to flooding during spring storms

• a warmer atmosphere holds more moisture: theory and climate models suggest an increased intensity of precipitation
 – if WA precipitation events become more intense, it will increase the risk of urban flooding and combined sewer overflows
Factors driving Portland Oregon’s future water supply

- Projected population growth increases demand: +66%
- Climate change: supply drops by ~16%
- Warmer temperatures increase demand +18%

Including the 2040s scenario for climate change impacts increases projected future supply needs by ~50% of the amount needed to meet population growth alone.

Institutional Resistance to Change
Increasing Scarcity and Conflict

2000-2020

The Problem: The System is Already Taxed

- Little or no room for growth in supply for the Columbia River and much of the PNW. Patterns of year-to-year and decade-to-decade climate variability may exacerbate or ameliorate potential impacts.

- Level of water scarcity is relatively new. Demands on water systems are growing, but supplies remain essentially fixed. Less margin of safety available to cope with the unexpected.

- Region in severe difficulty even if climate doesn’t change

- Management system inadequate to task, 2000-2020:
 - Highly fragmented;
 - No one management entity in charge re droughts;
 - Little or no inter-use coordination;
 - Inconsistent standards, re: water quantity and quality across basins;
 - Conflicting management practices: international, federal, states, counties, private, tribal lands;
 - Large number of largely uncoordinated planning efforts;
 - No official incorporation of climate change scenarios in planning.
Policy Hurdles (Resistance)

• Increasing intensity to trade-off conflicts:
 – East Side trade-offs - Hydro/Fish/Agriculture
 – West Side trade-offs – Municipal & Industrial/Hydro/Fish
 – East Side vs. West Side conflict

• Heavy emphasis on State sovereignty

• Differences Idaho vs. Oregon & Washington
 – re: application of Prior Appropriation rule.
Policy Hurdles (cont’d)

- System is top-down. Technical level cannot determine own planning scenarios.

- System currently includes only population growth & ESA applications in long term planning. [Slowly moving towards including CC scenarios & effects].

- Policy level in 2001 said they unlikely to face up to climate change challenge without leadership from white House & U.S. Congress (i.e., system is top-down for them too). Situation now changed--Western & Eastern states out in front.
Simulated Reliability of Water Resources Objectives for “Middle-of-the-Road” Scenarios

Reliability of Objective (%)
Climate change will force resource managers and planners to deal with increasingly complex trade-offs between different management objectives.
Temperature thresholds for coldwater fish in freshwater

- **Warming temperatures will increasingly stress coldwater fish in the warmest parts of our region**
 - A monthly average temperature of 68°F (20°C) has been used as an upper limit for resident cold water fish habitat, and is known to stress Pacific salmon during periods of freshwater migration, spawning, and rearing.
Climate Impacts & Consequences/Snohomish

- Climate Impacts- Increasing temp, less summer precipitation
- Hydrologic – Increasing winter peaks lower summer runoff, higher water temperatures
- Salmon Impacts -
 - 15-39% reduction in Chinook #'s without restoration
 - 5-23% reduction in Chinook #'s with restoration.
- Restoration efforts offset climate impacts
- Planning without climate change may result in overly optimistic estimate of benefits

Battin et al. 2007
What Are the Greatest Vulnerabilities to Regional Climate Change?
Drought, Multi-year Drought, and Decadal Megadrought
Multi-year Drought in PNW

- The greatest climate-related vulnerability of the region.
- Snowmelt-driven system in which human-engineered storage capacity limited & majority of storage in Columbia Basin in winter snowpack.
- Capacity to manage drought limited because authority highly fragmented & degree of control very constrained.
- Drought in PNW displays high spatial variability on East side of OR./WA. Cascades & East-West divide also important re availability of water.
Storage of Columbia River Water

Reservoir capacity only 30% of current total annual streamflow

Reservoir storage

- - reservoir storage

April-Sept flow

- - April-Sept flow
Hydrosystem Capacity in PNW

- **Columbia Basin:** Multi-use system. Demands exceed needs in any year streamflow less than long term average (0.9σ). The longer the drought, the more intense the zero sum conflicts among users. Substantial efficiencies available if system were to be operated more flexibly (change rule curves), but major organizational, political barriers in WA. & Or. Unable to copy Idaho example on large scale re water markets, water banks, & water rentals.

- **Snake Basin:** Multi-use system. System highly sensitive to drought, but existence of large aquifer managed conjunctively with surface water a significant buffer even in face of multiyear drought. Authority to manage relatively centralized & considerable flexibility in experimentation to manage water resources more efficiently in order to decrease vulnerability imposed by nature.

- **Klamath Basin:** Single-use system (Irrigation). Severe buffering limitations to even 1-year intense drought episodes. System very brittle. Easily “breaks”. Intensely zero sum conflict between farmers vs tribes & downstream commercial fishing communities.
The Take Away Message
Guiding Principles for Planning

• The future will not be like the past.
• Familiarize yourself with climate change impacts
• Take actions to increase the resilience of regional systems
• Monitor regional climate and resources for ongoing change
• Design for surprises. Policies & management practices should be flexible.

➢ Develop new approaches based on risk management.
The PNW Climate Change Panarchy

- How resilient? Picture mixed. West side in general more than East side. But even on East side, leadership & institutional design make significant differences, viz. Idaho.
- Latitude greater on West side--gift of nature: more P, significant additional storage possible in Seattle & Portland; but also significant leadership & innovation in SPU re gains in efficiency, restraints on demand growth, & sophisticated risk mgmt strategies.
- At same time, a lot of vulnerability socially constructed & institutions very resistant to change--fragmentation & confusion combined with policy constraints imposed by vested interests.
- However, high sensitivity to CC in many sectors means that changing rates of change will force policy innovation over time as sensitivity increases to vulnerability.
The PNW Climate Change Panarchy, cont’d.

• Is the region in a precarious condition?
 • Not in general. West side has margin of 3-4(?) decades; real issue is how or whether West side can manage growth effectively.
 • East side has much less margin, so less resilient under present operational rules of regional hydro-system. If latter changed with different choices, resilience can increase. And wise management with supportive institutions (Idaho) will continue to make a difference.
• But some places are in a precarious position, vide Yakima & the Klamath Basin.
Are there Nonlinearities & Thresholds?

• Yes, many—known and unknown:
• Precipitation quantity and intensity.
• Increasing temperature effects on wildfire, pests, pathogens & the scale of primary, secondary, & tertiary effects.
• What happens when human-caused warming surpasses the range of natural variability of the last 10K years?
• So emphasis on policy innovation to increase resilience & to mitigate the problem sooner rather than later.
• Turn to risk and vulnerability assessment/mgmt as general response, especially re greatest vulnerability.
Columbia Basin multiyear drought since 1750

- Since 1750, the most intense multiyear drought occurred in the 1840s; the 2nd worst was in the late 1920s to mid-1930s
Type of Risk, 2020’s

<table>
<thead>
<tr>
<th>Type</th>
<th>Magnitude</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increased flooding West-side unmanaged rivers</td>
<td>Limited in area & severity</td>
</tr>
<tr>
<td>2</td>
<td>4-6 weeks additional summer drought</td>
<td>Severe East-side re: ag. & fish</td>
</tr>
<tr>
<td>3</td>
<td>Increased frequency/intensity forest fires & pest infestations</td>
<td>Region-wide. Severe.</td>
</tr>
<tr>
<td>5</td>
<td>Increased coastal erosion/inundation combined effect sea level rise & increased intensity winter storms, esp. El Niño years.</td>
<td>WA/OR coastal regions</td>
</tr>
</tbody>
</table>